3,3'-Diindolylmethane inhibits angiogenesis and the growth of transplantable human breast carcinoma in athymic mice.

نویسندگان

  • Xiaofei Chang
  • Janet C Tou
  • Chibo Hong
  • Hyeon-A Kim
  • Jacques E Riby
  • Gary L Firestone
  • Leonard F Bjeldanes
چکیده

Studies have linked the consumption of broccoli and other cruciferous vegetables to a reduced risk of breast cancer. The phytochemical indole-3-carbinol (I3C), present in cruciferous vegetables, and its major acid-catalyzed reaction product 3,3'-diindolylmethane (DIM) have bioactivities relevant to the inhibition of carcinogenesis. In this study, the effect of DIM on angiogenesis and tumorigenesis in a rodent model was investigated. We found that DIM produced a concentration-dependent decrease in proliferation, migration, invasion and capillary tube formation of cultured human umbilical vein endothelial cells (HUVECs). Consistent with its antiproliferative effect, which was significant at only 5 microM DIM, this indole caused a G1 cell cycle arrest in actively proliferating HUVECs. Furthermore, DIM downregulated the expression of cyclin-dependent kinases 2 and 6 (CDK2, CDK6), and upregulated the expression of CDK inhibitor, p27(Kip1), in HUVECs. We observed further in a complementary in vivo Matrigel plug angiogenesis assay that, compared with vehicle control, neovascularization was inhibited up to 76% following the administration of 5 mg/kg DIM to female C57BL/6 mice. Finally, this dose of DIM also inhibited the growth of human MCF-7 cell tumor xenografts by up to 64% in female athymic (nu/nu) mice, compared with the vehicle control. This is the first study to show that DIM can strongly inhibit the development of human breast tumor in a xenograft model and to provide evidence for the antiangiogenic properties of this dietary indole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression profiling revealed survivin as a target of 3,3'-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells.

The phytochemical indole-3-carbinol (I3C), found in cruciferous vegetables, and its major acid-catalyzed reaction product 3,3'-diindolylmethane (DIM) showed anticancer activity mediated by its pleiotropic effects on cell cycle progression, apoptosis, carcinogen bioactivation, and DNA repair. To further elucidate the molecular mechanism(s) by which 3,3'-diindolylmethane exerts its effects on bre...

متن کامل

Inhibition of Angiogenesis and Invasion by 3,3¶-Diindolylmethane Is Mediated by the NF-KB Downstream Target Genes MMP-9 and uPA that Regulated Bioavailability of VEGF in Prostate Cancer

Progression of prostate cancer is believed to be dependent on angiogenesis induced by tumor cells. 3,3¶-Diindolylmethane (DIM) has been shown to repress neovascularization in a Matrigel plug assay and inhibit cell proliferation, migration, invasion, and capillary tube formation of cultured human umbilical vein endothelial cells. However, the molecular mechanism, by which DIM inhibits angiogenes...

متن کامل

3,3'-diindolylmethane rapidly and selectively inhibits hepatocyte growth factor/c-Met signaling in breast cancer cells.

3,3'-Diindolylmethane (DIM), an indole derivative from vegetables of the Brassica genus, has antiproliferative activity in breast cancer cells. Part of this activity is thought to be due to DIM inhibition of Akt signaling, but an upstream mechanism of DIM-induced Akt inhibition has not been described. The goals of this study were to investigate the kinetics of inhibition of Akt by physiological...

متن کامل

HSulf-1 inhibits angiogenesis and tumorigenesis in vivo.

We previously identified HSulf-1 as a down-regulated gene in several tumor types including ovarian, breast, and hepatocellular carcinomas. Loss of HSulf-1, which selectively removes 6-O-sulfate from heparan sulfate, up-regulates heparin-binding growth factor signaling and confers resistance to chemotherapy-induced apoptosis. Here we report that HSulf-1 expression in MDA-MB-468 breast carcinoma ...

متن کامل

Results from a dose-response study using 3,3'-diindolylmethane in the K14-HPV16 transgenic mouse model: cervical histology.

The human papilloma virus is the major cause of cervical cancer. Viral infection initiates cervical intraepithelial neoplasia, which progresses through several stages to cervical cancer. The objective of this study is to identify the minimum effective dose of diindolylmethane that prevents the progression from cervical dysplasia to carcinoma in situ. We document cervical histology in K14-HPV16 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2005